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In this paper we present a detailed antisolvent crystallization model. A population balance 
approach is adopted to describe the dynamic change of particle size in crystallization 
processes under the effect of antisolvent addition. The sodium chloride-water-ethanol is 
used as a model system. Maximum likelihood method is used to identify the nucleation and 
growth kinetic models for sodium chloride from data derived from controlled experiments. 
A number of growth and nucleation kinetic models are investigated in the estimation step to 
identify one with better prediction. The model is then validated under a new ethanol 
(antisolvent) addition profile showing to be in good agreement. The resulting model is then 
exploited in model-based optimization to readily develop optimal antisolvent feeding 
recipes. Two objective functions are used related to the control of particle size. Different 
feeding profiles are readily determined for different end-product particle size targets. The 
dynamic optimization results are successfully validated experimentally showing very close 
agreement. The approach presented here is rapid and repeatable and thus attractive for 
pharmaceutical and fine chemicals antisolvent crystallization operations aimed at control of 
particle size. 
 
1. Introduction 
Antisolvent crystallization (AC) operations are employed ubiquitously in the pharmaceutical 
and fine chemicals industries, producing solid particulate products. The particle size of the 
crystallization product is an important property that is typically required to conform to 
quality as well as operational demands. Particle size control is the concern of this paper in 
which we propose and present a model-based approach to optimal AC operation. In AC a 
secondary solvent known as antisolvent or precipitant is added to the solution resulting in 
the reduction of the solubility of the solute in the original solvent and consequently 
supersaturation is generated. The rate of supersaturation generation in AC is highly 
dependent on antisolvent addition rate. Keeping the supersaturation constant during a 
crystallization operation has been a long-standing technique for arguably optimal operation 
(Mullin and Nyvelt, 1971; Jones and Mullin, 1974). Zhou et al. (2006) have carried out 
concentration controlled seeded AC of a pharmaceutical compound using an algebraic 
equation for the solubility as a function of solvent. The main objective of their feedback 



concentration control system was to keep the supersaturation low and constant. (Nonoyama 
et al., 2006) presented a simulation study on seeded solvent crystallization of an active 
pharmaceutical ingredient (API) by water addition to original solution. (Muhrer et al., 2002) 
provided a simplified model of the Gas Antisolvent (GAS) crystallization process that 
describes the vapor-liquid equilibrium as well as particle formation and growth. They 
validated the developed model and suggested its use as a tool to design and optimize GAS 
crystallization processes. In spite of all the previous works, there still exists a big gap in the 
systematic control of the product crystal size and other properties in antisolvent mediated 
crystallization. Model-based optimization to determine optimal AC strategies/recipes is 
poised to fill this gap and as far as the authors are aware, is not currently addressed.  
 
In this paper, we outline how the developed model, which is based on the population 
balance theory, is 1) used in optimization-based parameter estimation to arrive at the 
nucleation and growth kinetic sub-model, and 2) utilized in model-based optimization to 
readily develop optimal antisolvent feeding recipes. A couple of objective functions related 
to the control of particle size are used, and different feeding profiles are readily determined 
for different end-product particle size targets. The dynamic optimization results are 
successfully validated experimentally showing very close agreement. The approach 
presented here is rapid and repeatable and thus attractive for pharmaceutical and fine 
chemicals AC operations aimed at control of particle size. 
 
2. Modeling and kinetic parameter estimation 
2.1 Theory 
We present extensions to previously developed population balance based models (Abbas, 
2003; Nowee et al., 2006), and address antisolvent effects and interactions. A summary of 
the model is given here while details will be presented in a full paper elsewhere. For a 
crystallization system with crystal growth assumed to be non-dispersed and independent of 
crystal size and where agglomeration and attrition are considered negligible, the population 
balance equation simplifies to:  
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where n(L,t) is the number density of crystals, t is time, L is the characteristic crystal size, V 
is the suspension volume, G is the growth rate of the crystals and B is the nucleation rate 
which is equal to zero for all sizes but the first. The kinetic equations are:  
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where ΔC is the absolute supersaturation, C* is the saturated concentration, MT is the 
magma density, kb and b are the nucleation parameters. In this growth rate power law model 



structure, the parameters kg and g are defined as functions of antisolvent mass fraction in 
solute free mixture (z): 
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To complete the model, a solubility model (Yeo et al., 2007) and total and component mass 
balances are incorporated. As such, changes in suspension volume are evaluated by: 
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Accordingly the numerator of equation (6) bears the antisolvent mass addition term as well 
as total solute mass in liquid phase. The antisolvent mass addition rate will become the 
optimization (time-varying) decision variable as will be discussed in Section 3. The model 
was implemented and solved in gPROMS (Process Systems Enterprise Ltd, UK). 
 
The kinetic sub-model (Equations 2-5) contains a vector θ of parameters [kb, k0, k1, k2, b, g0, 
g1] that needs to be determined via a parameter estimation step. In recent years, rigorous 
parameter estimation methods have been employed in crystallization kinetics identification 
but of all techniques, posing the estimation as an optimization problem has been regarded as 
most relevant (Rawlings et al., 1993; Mignon et al., 1996). Essentially the parameter 
estimation problem is an optimization one where the model is fitted to the experimental 
data. Once parameters are estimated, the identified model may be used for predictive 
simulation analysis where the various operational variables may be studied, and for 
optimization and control scheme development. In this work, a maximum likelihood 
optimization is carried out using the gEST facility in gPROMS. The kinetic parameter set 
that provides the highest probability of the model predicting the real data is determined. For 
the estimation exercise, the measured crystallization system states are mean particle size and 
particle free solution density. In previous works, we successfully applied this method to the 
identification of ammonium sulfate kinetics for crystallizations under cooling mode of 
operation (Abbas, 2003; Nowee et al., 2006). The same method is applied here with 
differences being modifications in the current model and experimental conditions to 
describe AC under constant temperature.  
 
2.2 Experimental  
For the estimation step and kinetic model identification, four experiments were conducted 
under three different constant antisolvent feeding rates – one experiment at a feedrate of 194 
ml.hr-1, two at a medium rate of 98.4 ml.hr-1 and one at a lower rate of 50 ml.hr-1. Figure 1 
shows the schematic of the experimental apparatus, instrumentation and control system 
used. Analytical grade chemicals were used. Ethanol was added to the aqueous NaCl 
solution using a calibrated digital dosing pump (Grundfos, Denmark). The ethanol addition 
profile was implemented and controlled from within a distributed control system (DCS) 
environment (Honeywell, USA). Temperature was controlled, at 25°C for all experiments, 



using a Pt100 thermocouple connected to heating/cooling circulator (Lauda, Germany). 
Particle chord length was measured online every 2 seconds using focused beam reflectance 
measurement (FBRM) probe (Mettler-Toledo Lasentec Products, USA). Infrequent samples 
were removed iso-kinetically from the crystallizer for particle size and density 
measurements. Particle size was measured offline using Mastersizer 2000 particle size 
analyzer (Malvern Instruments, UK) while density was measure using an offline density 
meter (Anton Paar DMA 5000, Austria) after the samples was filtered using a syringe 
microfilter. The concentration of the solution was inferred from the density reading using 
the correlation of (Galleguillos et al., 2003). 
 

 

Fig. 1: Experimental Setup. A - 
Crystallization vessel, B - Temperature 
control system, C - Pt100 thermocouple, D - 
Ethanol addition line, E - Pump, F - Ethanol 
reservoir, G - FBRM probe, H - Analogue 
output card, I - FBRM control computer, J - 
DCS Station, K - Controller I/O terminals, L 
- DCS server, M - Feed profile to pump. 
 

 
2.3 Estimation results and model validation 
In the model identification, we took a further step and computed θ for four empirical growth 
kinetic sub-model structures:  
• Model 1: Growth kinetic model is a function of absolute supersaturation (ΔC) and the 

parameters of Growth (kg and g) are constant.  
• Model 2: Growth kinetic model is a function of relative supersaturation (ΔC/C*) and the 

parameters of Growth (kg and g) are constant.  
• Model 3: Growth kinetic model is a function of absolute supersaturation (ΔC) and the 

parameters of Growth are functions (Equations 4 and 5) of antisolvent mass fraction in 
solute free mixture.  

• Model 4: Growth kinetic is a function of relative supersaturation (ΔC/C*) and the 
parameters of Growth are functions (Equations 4 and 5) of antisolvent mass fraction in 
solute free mixture. 

 
The estimation activities for all four sub-models were executed successfully. The goodness 
of the fits varied across the four models with Model 4 being adopted for further simulation 
and optimization. Typical estimation results in the form of overlay plots are shown in Fig. 2. 
In a further exercise, we undertook the testing of the AC dynamic predictions with the 
adopted kinetic model. A totally new and non-constant feedrate of antisolvent was defined 
arbitrarily and implemented. Figure 3 shows this feedrate profile along with the mean size 
profiles of experiment versus model prediction. A good agreement was found. 
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Figure 2: Results of Experiment 2 at antisolvent addition of 98.4 ml.hr-1. Overlay plots of 
experimental mean size (left) and solution concentration (right) against model predictions 

using the different kinetic models. 
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Figure 3: Experimental validation results showing the model prediction versus experimental 

data for mean size profile (left) and CSD (right) under a new antisolvent feedrate profile. 
 
3. Model-based optimization  
The mathematical description of the proposed dynamic optimization problem (DOP) can be 
summarized in Equation 7 inclusive of constraints of various types (Nowee et al., 2006). 
The objective function is simply the magnitude of a variable z(t), evaluated at the end of the 
optimization horizon t=tf. The results reported here correspond to two objective functions: 
(1) maximization of final mean size, and (2) achievement of desired final mean size of 100 
μm. The dynamic optimal mean size profiles and the corresponding concentration trends for 
both cases are presented in Figure 4. We further validate these profiles experimentally and 
found very good agreements with the optimization.  
 
The model-based approach presented here allows systematic and rapid process development 
of optimal operation of AC generic to be readily implemented for control of particle size of 
pharmaceuticals or fine chemicals compounds. 
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Figure 4: Optimal feedrate and experimental validation of mean size and concentration 

results under objective function (1) (left) and objective function (2) (right).  
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